Рабочая программа по математике 5 класс_60577

Муниципальное казенное общеобразовательное учреждение

« Средняя общеобразовательная школа № 2»

Рассмотрено

На заседании МО

Протокол № ______ от

« » _________ 2013 г.

Согласовано

Заместитель директора по

УВР МКОУ СОШ № 2

« » _________ 2013 г.

Утверждаю

Директор МКОУ СОШ № 2

Приказ № ______ от

« » _________ 2013 г.

Рабочая программа

по математике

5 а, б класс

Учителя математики

Пшено Елены Викторовны

с. Иргаклы, 2013 год

Пояснительная записка

Рабочая программа учебного предмета «Математика» (далее Рабочая программа) составлена на основании следующих нормативно-правовых документов:

Федерального компонента государственного стандарта основного общего образования по математике, утвержденного приказом Минобразования России от 5.03.2004 г. № 1089. Стандарт опубликован в издании «Федеральный компонент государственного стандарта общего образования. Часть I. Начальное общее образование. Основное общее образование» (Москва, Министерство образования Российской Федерации, 2004)

Закона Российской Федерации «Об образовании» (статья 7, 9, 32).

Программы основного общего образования по математике (Программа. Планирование учебного материала. Математика. 5-6 классы / [авт.-сост. В.И. Жохов] – 2-е изд., стер. – М.: Мнемозина, 2010. – 31 с.).

Программа курса математики в 5 классе рассчитана на 175 часов при 5-и часовой нагрузке в неделю.

Целью изучения курса математики в V классе является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.

В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.

Планирование составлено на основе:

1. Программы основного общего образования по математике (Программа. Планирование учебного материала. Математика. 5 класс / [авт.-сост. В.И. Жохов] – 2-е изд., стер. – М.: Мнемозина, 2010. – 31 с.).

2. Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089).

3. Учебник «Математика» для 5 классов образовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбург – М. Мнемозина, 2009 г.

4. Дидактические материалы по математике. / В.И. Жохов. / М: Просвещение, 2008 г. — 126 с.

5. Л.П. Попова /Поурочные разработки по математике; 5 кл., –М.;ВАКО, 2009. -496 с. – (В помощь школьному учителю).

М.В. Ларина / Уроки математики в 5- 6 классах. Поурочные планы. Части 1-2 – Волгоград: Учитель 2007г.

Общая характеристика учебного предмета

Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностей человеческой деятельности: учеба, познания, коммуникация, профессионально трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смысла жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения математике.

Цели обучения математике в 5 классе:

овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В основу программы положен обязательный минимум содержания образования по математике в соответствии с государственными стандартами.

На основании требований Государственного образовательного стандарта в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения:

- приобретение математических знаний и умений;

- овладение обобщенными способами мыслительной, творческой деятельностей;

- освоение компетенций (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной) и профессионально-трудового выбора.

Математическое образование в основной школе складывается из следующих содержательных компонентов: арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развивались на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Общеучебные цели

Создание условия для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки.

Создание условия для умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи.

Формирование умения использовать различные языки математики: словесный, символический, графический.

Формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства.

Создание условия для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность.

Формирование умения использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств тел; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Создание условия для интегрирования в личный опыт новую, в том числе самостоятельно полученную информацию.

Общепредметные цели

— Овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования.

— Интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиция, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей.

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

Воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Общеучебные умения, навыки и способы деятельности

Учащиеся приобретают и совершенствуют опыт:

Планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов.

Решение разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска путей и способов решения.

Исследовательской деятельности, развитие идей, проведение экспериментов, обобщения, постановки и формулирования новых задач.

Ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства.

Проведение доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования.

Поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Роль и место предмета в федеральном базисном учебном плане.

Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. В дальнейшей жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической.

Материалы для рабочей программы составлены на основе:

федерального компонента государственного стандарта общего образования,

примерной программы по математике основного общего образования,

федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях,

с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,

тематического планирования учебного материала,

базисного учебного плана.

Программа рассчитана на 175 учебных часов, в том числе 12 часов на проведение контрольных работ. Основная форма организации образовательного процесса – классно-урочная система.

Предусматривается применение следующих технологий обучения:

- традиционная классно-урочная

- игровые технологии

- элементы проблемного обучения

- технологии уровневой дифференциации

- здоровьесберегающие технологии

- ИКТ

Виды и формы контроля: переводная аттестация, промежуточный, предупредительный контроль; контрольные работы.

СОДЕРЖАНИЕ ПРОГРАММЫ

1. Натуральные числа и шкалы

Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, треугольник. Измерение и построение отрезков. Координатный луч.

Основная цель— систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков. Систематизация сведений о натуральных числах позволяет восстановить у учащихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки их табличного сложения и умножения.

При изучении геометрического материала основное внимание уделяется формированию навыков измерения и построения отрезков при помощи линейки.

В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче.

2.Сложение и вычитание натуральных чисел

Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.

Основная цель— закрепить и развить навыки сложения и вычитания натуральных чисел.

Начиная с этой темы основное внимание, уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями.

В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание).

3.Умножение и деление натуральных чисел

Умножение и деление натуральных чисел, свойства умножения. Квадрат и куб числа. Решение текстовых задач.

Основная цель — закрепить и развить навыки арифметических действий с натуральными числами.

В этой теме проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел. Вводятся понятия квадрата и куба числа.

Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий.

Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на… (в…)», «меньше на… (в…)», а также задачи на известные учащимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений, так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.

4.Площади и объемы

Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей.

Основная цель— расширить представления учащихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.

При изучении темы учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.

5. Обыкновенные дроби

Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.

Основная цель — познакомить учащихся с понятием дроби в объеме, достаточном для введения десятичных дробей.

В данной теме изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от учащихся.

Десятичные дроби. Сложение и вычитание десятичных дробей

Десятичная дробь. Сравнение, округление, сложение и вычитание десятичных дробей. Решение текстовых задач.

Основная цель— выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей. При введении десятичных дробей важно добиться у учащихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби.

Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам.

Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями.

При изучении операции округления числа вводится новое понятие — «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.

Умножение и деление десятичных дробей

Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач.

Основная цель— выработать умения умножать и делить десятичные дроби, выполнять задания на все действия ( натуральными числами и десятичными дробями.

Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.

8. Инструменты для вычислений и измерений

Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол, треугольник. Величина (градусная мера) угла. Единицы измерения углов. Измерение углов. Построение угла заданной величины.

Основная цель— сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.

У учащихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого.

Продолжается работа по распознаванию и изображению геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы.

Круговые диаграммы дают представления учащимся о наглядном изображении распределения отдельных составные частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах.

В классе, обеспеченном калькуляторами, можно научить школьников использовать калькулятор при выполнении отдельных арифметических действий.

9. Повторение. Решение задач

ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ

Числа и вычисления

В результате изучения курса математики учащиеся должны:

правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, рациональное, иррациональное, положительное, десятичная дробь и др.; переходить от одной формы записи чисел к другой (например, представлять десятичную дробь в виде обыкновенной, проценты — в виде десятичной или обыкновенной дроби);

сравнивать числа, упорядочивать наборы чисел; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой;

—выполнять арифметические действия с рациональными числами, находить значения степеней; сочетать при вычислениях устные и письменные приемы;

решать основные задачи на дроби;

Выражения и их преобразования

В результате изучения курса математики учащиеся должны:

—правильно употреблять термины «выражение», «числовое выражение», «буквенное выражение», «значение выражения», понимать их использование в тексте, в речи учителя, понимать формулировку заданий: «упростить выражение», «найти значение выражения», «разложить на множители»;

составлять несложные буквенные выражения и формулы; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления; выражать из формул одни переменные через другие;

находить значение степени с натуральным показателем.

Уравнения и неравенства

В результате изучения курса математики учащиеся должны:

понимать, что уравнения — это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики;

правильно употреблять термины «уравнение», «неравенство», «корень уравнения»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить уравнение, неравенство»;

решать линейные уравнения с одной переменной.

Геометрические фигуры и их свойства. Измерение геометрических величин

В результате изучения курса математики учащиеся должны:

распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, многоугольники, окружности, круги); изображать указанные геометрические фигуры; выполнять чертежи по условию задачи;

владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов;

решать задачи на вычисление геометрических величин (длин, углов, площадей, объемов), применяя изученные свойства фигур и формулы.

Название темы

Кол.

часов

Пункт

учебн.

Дата

Основная цель

ПОВТОРЕНИЕ ( 4 ч.)

1

2

3

4

4

Повторить материал, изученный в начальной школе

ГЛАВА 1. НАТУРАЛЬНЫЕ ЧИСЛА

Натуральные числа и шкалы ( 15 ч.)

5

6

7

Обозначение натуральных чисел.

3

1

-систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.

8

9

10

Отрезок. Длина

отрезка. Треугольник.

3

2

11

12

Плоскость. Прямая.

Луч.

2

3

13

14

15

Шкалы и координаты.

3



Страницы: Первая | 1 | 2 | 3 | ... | Вперед → | Последняя | Весь текст